Machines (Dec 2021)

In-Process Chatter Detection Using Signal Analysis in Frequency and Time-Frequency Domain

  • Michele Perrelli,
  • Francesco Cosco,
  • Francesco Gagliardi,
  • Domenico Mundo

DOI
https://doi.org/10.3390/machines10010024
Journal volume & issue
Vol. 10, no. 1
p. 24

Abstract

Read online

All machining processes involve vibrations generated by structural sources such as a machine’s moving parts or by the interaction between cutting tools and work-pieces. Relative vibrations between the work-pieces and the cutting tool are the most relevant from the point of view of the regenerative chatter phenomenon. In fact, these vibrations can lead to a chip yregeneration effect, which results in unwanted consequences, rapidly degenerating towards a very poor quality of surface finishing or, in case of severe chatter conditions, to machine-tool or work-piece damage. In the past decades, two different approaches for chatter avoidance were proposed by the scientific community, and they are commonly referred to as Out-of-Process (OuP) and in-Process (iP) solutions. The OuP solutions are off-line approaches, which allow to properly set the working parameters before machining starts. Ip solutions are on-line techniques, which allow to dynamically change the working parameters during machining by using single or multiple sensors. By monitoring the machining process, iP algorithms try to keep the machining process in stable working conditions while keeping high productivity levels. This study dealt with a novel iP chatter-detection strategy based on the Power Spectral Density (PSD) analysis and on the Wavelet Packet Decomposition (WPD) of different sensor signals. The preliminary results demonstrate the stability and feasibility of proposed indicators for chatter detection in industrial application.

Keywords