IEEE Access (Jan 2019)

Software Implementation of 10G-EPON Downstream Physical-Layer Processing Adopting CPU-GPU Cooperative Computing for Flexible Access Systems

  • Takahiro Suzuki,
  • Sang-Yuep Kim,
  • Jun-Ichi Kani,
  • Jun Terada

DOI
https://doi.org/10.1109/ACCESS.2019.2904083
Journal volume & issue
Vol. 7
pp. 33888 – 33897

Abstract

Read online

The application of network function virtualization (NFV) and software-defined networks (SDNs) to optical access systems continues to attract a lot of attention. Their use on general-purpose hardware allows for cost-effective implementation and quick response to functional requirements. This paper demonstrates the softwarization of the complete downstream physical (PHY)-layer functions of the optical line terminal (OLT), including a scrambler, which uses a serial processing algorithm that cannot be parallelized by a general-purpose graphics processing unit (GPU). We propose CPU-GPU cooperative implementation architecture that softwarizes the complete 10G-EPON OLT downstream PHY. We achieve 10.3125-Gbps real-time performance through experiments for the first time.

Keywords