Microorganisms (Nov 2022)

Protective Effect of <i>Bifidobacterium animalis</i> subs. <i>lactis</i> MG741 as Probiotics against UVB-Exposed Fibroblasts and Hairless Mice

  • Ji Yeon Lee,
  • Jeong-Yong Park,
  • YongGyeong Kim,
  • Chang-Ho Kang

DOI
https://doi.org/10.3390/microorganisms10122343
Journal volume & issue
Vol. 10, no. 12
p. 2343

Abstract

Read online

Skin photoaging, which causes wrinkles, increased epidermal thickness, and rough skin texture, is induced by ultraviolet B (UVB) exposure. These symptoms by skin photoaging have been reported to be involved in the reduction of collagen by the expression of matrix metalloproteinases (MMPs) and activator protein-1 (AP-1). This study investigated the protective effects of Bifidobacterium animalis subsp. lactis MG741 (Bi. lactis MG741) in Hs-68 fibroblasts and hairless mice (HR-1) following UVB exposure. We demonstrated that the Bi. lactis MG741 reduces wrinkles and skin thickness by downregulating MMP-1 and MMP-3, phosphorylation of extracellular signal-regulated kinase (ERK), and c-FOS in fibroblasts and HR-1. Additionally, in UVB-irradiated dorsal skin of HR-1, Bi. lactis MG741 inhibits the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), an inflammation-related factor. Thus, Bi. lactis MG741 has the potential to prevent wrinkles and skin inflammation by modulating skin photoaging markers.

Keywords