Drones (Dec 2022)

UAV4PE: An Open-Source Framework to Plan UAV Autonomous Missions for Planetary Exploration

  • Julian Galvez-Serna,
  • Fernando Vanegas,
  • Shahzad Brar,
  • Juan Sandino,
  • David Flannery,
  • Felipe Gonzalez

DOI
https://doi.org/10.3390/drones6120391
Journal volume & issue
Vol. 6, no. 12
p. 391

Abstract

Read online

Autonomous Unmanned Aerial Vehicles (UAV) for planetary exploration missions require increased onboard mission-planning and decision-making capabilities to access full operational potential in remote environments (e.g., Antarctica, Mars or Titan). However, the uncertainty introduced by the environment and the limitation of available sensors has presented challenges for planning such missions. Partially Observable Markov Decision Processes (POMDPs) are commonly used to enable decision-making and mission-planning processes that account for environmental, perceptional (extrinsic) and actuation (intrinsics) uncertainty. Here, we propose the UAV4PE framework, a testing framework for autonomous UAV missions using POMDP formulations. This framework integrates modular components for simulation, emulation, UAV guidance, navigation and mission planning. State-of-the-art tools such as python, C++, ROS, PX4 and JuliaPOMDP are employed by the framework, and we used python data-science libraries for the analysis of the experimental results. The source code and the experiment data are included in the UAV4PE framework. The POMDP formulation proposed here was able to plan and command a UAV-based planetary exploration mission in simulation, emulation and real-world experiments. The experiments evaluated key indicators such as the mission success rate, the surface area explored and the number of commands (actions) executed. We also discuss future work aimed at improving the UAV4PE framework, and the autonomous UAV mission planning formulation for planetary exploration.

Keywords