Transcriptional Profiling of Quiescent Muscle Stem Cells In Vivo
Cindy T.J. van Velthoven,
Antoine de Morree,
Ingrid M. Egner,
Jamie O. Brett,
Thomas A. Rando
Affiliations
Cindy T.J. van Velthoven
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
Antoine de Morree
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
Ingrid M. Egner
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biosciences, University of Oslo, Blindern, Oslo 0316, Norway
Jamie O. Brett
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
Thomas A. Rando
Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Paul F. Glenn Center for the Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA; Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA; Corresponding author
Summary: Muscle stem cells (MuSCs) persist in a quiescent state and activate in response to specific stimuli. The quiescent state is both actively maintained and dynamically regulated. However, analyses of quiescence have come primarily from cells removed from their niche. Although these cells are still quiescent, biochemical changes certainly occur during the isolation process. Here, we analyze the transcriptome of MuSCs in vivo utilizing MuSC-specific labeling of RNA. Notably, labeling transcripts during the isolation procedure revealed very active transcription of specific subsets of genes. However, using the transcription inhibitor α-amanitin, we show that the ex vivo transcriptome remains largely reflective of the in vivo transcriptome. Together, these data provide perspective on the molecular regulation of the quiescent state at the transcriptional level, demonstrate the utility of these tools for probing transcriptional dynamics in vivo, and provide an invaluable resource for understanding stem cell state transitions. : van Velthoven et al. use metabolic labeling of RNA to examine the quiescent transcriptome of MuSCs in vivo and during early activation. They find dynamic regulation of specific subsets of transcripts in quiescent and activating MuSCs, and they demonstrate the utility of these tools for probing transcriptional dynamics in vivo. Keywords: satellite cells, quiescence, nascent transcription