PLoS Computational Biology (Oct 2011)

Ligand-induced modulation of the free-energy landscape of G protein-coupled receptors explored by adaptive biasing techniques.

  • Davide Provasi,
  • Marta Camacho Artacho,
  • Ana Negri,
  • Juan Carlos Mobarec,
  • Marta Filizola

DOI
https://doi.org/10.1371/journal.pcbi.1002193
Journal volume & issue
Vol. 7, no. 10
p. e1002193

Abstract

Read online

Extensive experimental information supports the formation of ligand-specific conformations of G protein-coupled receptors (GPCRs) as a possible molecular basis for their functional selectivity for signaling pathways. Taking advantage of the recently published inactive and active crystal structures of GPCRs, we have implemented an all-atom computational strategy that combines different adaptive biasing techniques to identify ligand-specific conformations along pre-determined activation pathways. Using the prototypic GPCR β2-adrenergic receptor as a suitable test case for validation, we show that ligands with different efficacies (either inverse agonists, neutral antagonists, or agonists) modulate the free-energy landscape of the receptor by shifting the conformational equilibrium towards active or inactive conformations depending on their elicited physiological response. Notably, we provide for the first time a quantitative description of the thermodynamics of the receptor in an explicit atomistic environment, which accounts for the receptor basal activity and the stabilization of different active-like states by differently potent agonists. Structural inspection of these metastable states reveals unique conformations of the receptor that may have been difficult to retrieve experimentally.