Jurnal Informatika (Nov 2022)

Pattern Detection of Economic and Pandemic Vulnerability Index in Indonesia Using Bi-Cluster Analysis

  • Wiwik Andriyani Lestari Ningsih,
  • I Made Sumertajaya,
  • Asep Saefuddin

DOI
https://doi.org/10.30595/juita.v10i2.14940
Journal volume & issue
Vol. 10, no. 2
pp. 273 – 282

Abstract

Read online

Bi-clustering is a clustering development that aims to group data simultaneously from two directions. The Iterative Signature Algorithm (ISA) is one of the bi-clustering algorithms that work iteratively to find the most correlated bi-cluster. Detecting economic and pandemic vulnerability using bi-cluster analysis is essential to get spatial patterns and an overview of Indonesia's economic and pandemic vulnerability characteristics. Bi-clustering using ISA requires setting the row and column threshold to form seventy combinations of thresholds. The best is chosen based on the average value of mean square residue to volume ratios. In addition, the similarity of the best bi-cluster with the other is also seen based on the Liu and Wang index values. The -1.0 row and -1.0 column threshold combinations were selected and produced the best bi-cluster with the smallest average value of mean square residue to volume ratios (0.00141). Based on Liu and Wang index values, it has more than 95% similarity with the combination of -1.0 row and -0.9 column thresholds and the -0.9 row and -1.0 column thresholds. These selected threshold combinations produce three bi-clusters with five types of spatial patterns and different characteristics because of the overlap between these three bi-clusters.

Keywords