Dry-Jet Wet Spinning of Thermally Stable Lignin-Textile Grade Polyacrylonitrile Fibers Regenerated from Chloride-Based Ionic Liquids Compounds
Muhannad Al Aiti,
Amit Das,
Mikko Kanerva,
Maija Järventausta,
Petri Johansson,
Christina Scheffler,
Michael Göbel,
Dieter Jehnichen,
Harald Brünig,
Lucas Wulff,
Susanne Boye,
Kerstin Arnhold,
Jurkka Kuusipalo,
Gert Heinrich
Affiliations
Muhannad Al Aiti
Institute of Materials Science, Technische Universität Dresden, D-01062 Dresden, Germany
Amit Das
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Mikko Kanerva
Polymer Science Engineering, Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
Maija Järventausta
Paper Converting and Packaging Technology, Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
Petri Johansson
Paper Converting and Packaging Technology, Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
Christina Scheffler
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Michael Göbel
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Dieter Jehnichen
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Harald Brünig
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Lucas Wulff
Institute of Materials Science, Technische Universität Dresden, D-01062 Dresden, Germany
Susanne Boye
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Kerstin Arnhold
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
Jurkka Kuusipalo
Paper Converting and Packaging Technology, Materials Science and Environmental Engineering, Faculty of Engineering and Natural Sciences, Tampere University, FI-33014 Tampere, Finland
Gert Heinrich
Leibniz-Institut für Polymerforschung Dresden e. V., D-01069 Dresden, Germany
In this paper, we report on the use of amorphous lignin, a waste by-product of the paper industry, for the production of high performance carbon fibers (CF) as precursor with improved thermal stability and thermo-mechanical properties. The precursor was prepared by blending of lignin with polyacrylonitrile (PAN), which was previously dissolved in an ionic liquid. The fibers thus produced offered very high thermal stability as compared with the fiber consisting of pure PAN. The molecular compatibility, miscibility, and thermal stability of the system were studied by means of shear rheological measurements. The achieved mechanical properties were found to be related to the temperature-dependent relaxation time (consistence parameter) of the spinning dope and the diffusion kinetics of the ionic liquids from the fibers into the coagulation bath. Furthermore, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and dynamic mechanical tests (DMA) were utilized to understand in-depth the thermal and the stabilization kinetics of the developed fibers and the impact of lignin on the stabilization process of the fibers. Low molecular weight lignin increased the thermally induced physical shrinkage, suggesting disturbing effects on the semi-crystalline domains of the PAN matrix, and suppressed the chemically induced shrinkage of the fibers. The knowledge gained throughout the present paper allows summarizing a novel avenue to develop lignin-based CF designed with adjusted thermal stability.