Reproduction and Fertility (Aug 2024)

Expression levels of the selenium-uptake receptor LRP8, the antioxidant selenoprotein GPX1 and steroidogenic enzymes correlate in granulosa cells

  • Katja Hummitzsch,
  • Jasmine E Kelly,
  • Nicholas Hatzirodos,
  • Wendy M Bonner,
  • Feng Tang,
  • Hugh H Harris,
  • Raymond J Rodgers

DOI
https://doi.org/10.1530/RAF-23-0074
Journal volume & issue
Vol. 5, no. 3
pp. 1 – 12

Abstract

Read online

Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1–8, CAT, SODs 1 and 2, PRDXs 1–6, GSR, TXN, TXNRDs 1–3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones.

Keywords