APL Photonics (Mar 2024)

Implementation of Er-doped random fiber laser self-mixing sensor with ultra-limit sensitivity

  • Jun Hu,
  • Ruifeng Li,
  • Zhijia Hu,
  • Haosen Li,
  • Yaozhong Yang,
  • Hongtao Li,
  • Jialiang Lv,
  • Qi Yu,
  • Yunkun Zhao,
  • Benli Yu,
  • Liang Lu

DOI
https://doi.org/10.1063/5.0192626
Journal volume & issue
Vol. 9, no. 3
pp. 036113 – 036113-7

Abstract

Read online

This study first demonstrates that the random distributed feedback fiber laser (RDFL) can be implemented for sensing detection by using the self-mixing effect as a sensing mechanism. By constructing a compact self-mixing velocimeter based on Er-doped RDFL with the integration of a laser, sensing element, and transmission platform, we successfully measured the minimum detectable feedback intensity of 38.65 fW for the velocity signal, corresponding to 0.55 photons per Doppler cycle, exhibiting ultra-high sensitivity dynamics characteristics. In addition, the velocity measurement of a non-cooperative target at a single-channel distance of 100 km is accomplished because of the natural feature of long-distance transmission for the random distributed feedback fiber lasers, which greatly improves the ultra-long detection range in the field of self-mixing sensing. The proposed sensing scheme not only unveils a fresh perspective on the exploration of random fiber laser sensing but also showcases its diverse and wide-ranging applications within the realm of remote sensing measurements.