Karpatsʹkì Matematičnì Publìkacìï (Jun 2017)

On the growth of a class of Dirichlet series absolutely convergent in half-plane

  • L.V. Kulyavetc',
  • O.M. Mulyava

DOI
https://doi.org/10.15330/cmp.9.1.63-71
Journal volume & issue
Vol. 9, no. 1
pp. 63 – 71

Abstract

Read online

In terms of generalized orders it is investigated a relation between the growth of a Dirichlet series $F(s)=\sum\limits_{n=1}^{\infty}a_n\exp\{s\lambda_n\}$ with the abscissa of asolute convergence $A\in (-\infty,+\infty)$ and the growth of Dirichlet series $F_j(s)=\sum\limits_{n=1}^{\infty}a_{n,j}\exp\{s\lambda_n\}$, $1\le j\le 2$, with the same abscissa of absolute convergence, if the coefficients $a_n$ are connected with the coefficients $a_{n,j}$ by correlation $$ \beta\left(\frac{\lambda_n}{\ln\,\left(|a_n|e^{A\lambda_n}\right)}\right)=(1+o(1)) \prod\limits_{j=1}^{m}\beta\left(\frac{\lambda_n} {\ln\,\left(|a_{n,j}|e^{A\lambda_n}\right)}\right)^{\omega_j},\ n\to\infty, $$ where $\omega_j>0$ $(1\le j\le m)$, $\sum\limits_{j=1}^{m}\omega_j=1$, and $\alpha$ is a positive slowly increasing function on $[x_0, +\infty)$.

Keywords