The Applications of 3D Printing for Craniofacial Tissue Engineering
Owen Tao,
Jacqueline Kort-Mascort,
Yi Lin,
Hieu M. Pham,
André M. Charbonneau,
Osama A. ElKashty,
Joseph M. Kinsella,
Simon D. Tran
Affiliations
Owen Tao
McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
Jacqueline Kort-Mascort
Department of Bioengineering, McGill University, 817 Sherbrook Street West, Montreal, QC H3A 0C3, Canada
Yi Lin
Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56 Lingyuan Road West, Guangzhou 510055, China
Hieu M. Pham
McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
André M. Charbonneau
McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
Osama A. ElKashty
McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
Joseph M. Kinsella
Department of Bioengineering, McGill University, 817 Sherbrook Street West, Montreal, QC H3A 0C3, Canada
Simon D. Tran
McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada
Three-dimensional (3D) printing is an emerging technology in the field of dentistry. It uses a layer-by-layer manufacturing technique to create scaffolds that can be used for dental tissue engineering applications. While several 3D printing methodologies exist, such as selective laser sintering or fused deposition modeling, this paper will review the applications of 3D printing for craniofacial tissue engineering; in particular for the periodontal complex, dental pulp, alveolar bone, and cartilage. For the periodontal complex, a 3D printed scaffold was attempted to treat a periodontal defect; for dental pulp, hydrogels were created that can support an odontoblastic cell line; for bone and cartilage, a polycaprolactone scaffold with microspheres induced the formation of multiphase fibrocartilaginous tissues. While the current research highlights the development and potential of 3D printing, more research is required to fully understand this technology and for its incorporation into the dental field.