International Journal of Pharmaceutics: X (Jun 2024)
Design and validation of a custom-made system to measure transepithelial electrical impedance in human corneas preserved in active storage machine
Abstract
Corneal epithelial barrier represents one of the major limitations to ocular drug delivery and can be explored non-invasively through the evaluation of its electrical properties. Human corneas stored in active storage machine (ASM) could represent an interesting physiological model to explore transcorneal drug penetration. We designed a new system adapted to human corneas preserved in ASM to explore corneal epithelial barrier function ex-vivo. A bipolar set-up including Ag/AgCl electrodes adaptors to fit the corneal ASM and a dedicated software was designed and tested on freshly excised porcine corneas (n = 59) and human corneas stored 14 days in ASM (n = 6). Porcine corneas presented significant and proportional decrease in corneal impedance in response to increasing-size epithelial ulcerations and acute exposure to benzalkonium chloride (BAC) 0.01 and 0.05%. Human corneas stored 14 days in ASM presented a significant increase in corneal impedance associated with the restoration of a multi-layer epithelium and an enhanced expression of tight junctions markers zonula occludens 1, claudin 1 and occludin. These results support the relevance of the developed approach to pursue the exploration and development of human corneas stored in ASM as a physiological pharmacological model.