Journal of Stress Physiology & Biochemistry (Aug 2012)
FUNCTIONAL SPECIALIZATION OF DUPLICATED FLAVONOID BIOSYNTHESIS GENES IN WHEAT
Abstract
Gene duplication followed by subfunctionalization and neofunctionalization is of a great evolutionary importance. In plant genomes, duplicated genes may result from either polyploidization (homoeologous genes) or segmental chromosome duplications (paralogous genes). In allohexaploid wheat Triticum aestivum L. (2n=6x=42, genome BBAADD), both homoeologous and paralogous copies were found for the regulatory gene Myc encoding MYC-like transcriptional factor in the biosynthesis of flavonoid pigments, anthocyanins, and for the structural gene F3h encoding one of the key enzymes of flavonoid biosynthesis, flavanone 3-hydroxylase. From the 5 copies (3 homoeologous and 2 paralogous) of the Myc gene found in T. aestivum, only one plays a regulatory role in anthocyanin biosynthesis, interacting complementary with another transcriptional factor (MYB-like) to confer purple pigmentation of grain pericarp in wheat. The role and functionality of the other 4 copies of the Myc gene remain unknown. From the 4 functional copies of the F3h gene in T. aestivum, three homoeologues have similar function. They are expressed in wheat organs colored with anthocyanins or in the endosperm, participating there in biosynthesis of uncolored flavonoid substances. The fourth copy (the B-genomic paralogue) is transcribed neither in wheat organs colored with anthocyanins nor in seeds, however, it’s expression has been noticed in roots of aluminium-stressed plants, where the three homoeologous copies are not active. Functional diversification of the duplicated flavonoid biosynthesis genes in wheat may be a reason for maintenance of the duplicated copies and preventing them from pseudogenization.The study was supported by RFBR (11-04-92707). We also thank Ms. Galina Generalova for technical assistance.