Molecules (Sep 2018)

The Effect of Ultrasound, Oxygen and Sunlight on the Stability of (−)-Epigallocatechin Gallate

  • Jiajun Zeng,
  • Huanhua Xu,
  • Yu Cai,
  • Yan Xuan,
  • Jia Liu,
  • Yue Gao,
  • Qingxian Luan

DOI
https://doi.org/10.3390/molecules23092394
Journal volume & issue
Vol. 23, no. 9
p. 2394

Abstract

Read online

(−)-Epigallocatechin gallate (EGCG), is the main catechin found in green tea, and has several beneficial effects. This study investigated the stability of EGCG aqueous solution under different stored and ultrasonic conditions to determine whether it can be used with an ultrasonic dental scaler to treat periodontal infection. Four concentrations (0.05, 0.1, 0.15, 2 mg/mL) of EGCG aqueous solution were prepared and stored under four different conditions (A: Exposed to neither sunlight nor air, B: Exposed to sunlight, but not air, C: Not exposed to sunlight, but air, D: Exposed to sunlight and air) for two days. The degradation rate of EGCG was measured by high performance liquid chromatography (HPLC). On the other hand, an ultrasonic dental scaler was used to atomize the EGCG solution under four different conditions (a: Exposed to neither air nor sunlight, b: Not exposed to air, but sunlight, c: Not exposed to sunlight, but air, d: Exposed to air and sunlight), the degradation of EGCG was measured by HPLC. We found that the stability of EGCG was concentration-dependent in water at room temperature. Both sunlight and oxygen influenced the stability of EGCG, and oxygen had a more pronounced effect on stability of EGCG than sunlight. The most important conclusion was that the ultrasound may accelerate the degradation of EGCG due to the presence of oxygen and sunlight, but not because of the ultrasonic vibration. Thus, EGCG aqueous solution has the potential to be used through an ultrasonic dental scaler to treat periodontal infection in the future.

Keywords