PLoS ONE (Jan 2013)

Inhibition of both EGFR and IGF1R sensitized prostate cancer cells to radiation by synergistic suppression of DNA homologous recombination repair.

  • Yong Wang,
  • Jian Lin Yuan,
  • Yun Tao Zhang,
  • Jian Jun Ma,
  • Peng Xu,
  • Chang Hong Shi,
  • Wei Zhang,
  • Yu Mei Li,
  • Qiang Fu,
  • Guang Feng Zhu,
  • Wei Xue,
  • Yong Hua Lei,
  • Jing Yu Gao,
  • Juan Ying Wang,
  • Chen Shao,
  • Cheng Gang Yi,
  • He Wang

DOI
https://doi.org/10.1371/journal.pone.0068784
Journal volume & issue
Vol. 8, no. 8
p. e68784

Abstract

Read online

Reduced sensitivity of prostate cancer (PC) cells to radiation therapy poses a significant challenge in the clinic. Activation of epidermal growth factor receptor (EGFR), type 1 insulin-like growth factor receptor (IGF1R), and crosstalk between these two signaling pathways have been implicated in the development of radiation resistance in PC. This study assessed the effects of targeting both receptors on the regulation of radio-sensitivity in PC cells. Specific inhibitors of EGFR and IGF1R, Erlotinib and AG1024, as well as siRNA targeting EGFR and IGF1R, were used to radio-sensitize PC cells. Our results showed that co-inhibiting both receptors significantly dampened cellular growth and DNA damage repair, and increased radio-sensitivity in PC cells. These effects were carried out through synergistic inhibition of homologous recombination-directed DNA repair (HRR), but not via inhibition of non-homologous end joining (NHEJ). Furthermore, the compromised HRR capacity was caused by reduced phosphorylation of insulin receptor substrate 1 (IRS1) and its subsequent interaction with Rad51. The synergistic effect of the EGFR and IGF1R inhibitors was also confirmed in nude mouse xenograft assay. This is the first study testing co-inhibiting EGFR and IGF1R signaling in the context of radio-sensitivity in PC and it may provide a promising adjuvant therapeutic approach to improve the outcome of PC patients to radiation treatment.