Italian Journal of Animal Science (Jan 2013)

Neuroglial cells in long-term primary cultures from the gilthead sea bream (Sparus aurata L.): new functional in vitro model from bony fish brain

  • Gerardo Centoducati,
  • Valentina Zacchino,
  • Marcella Narracci,
  • Nicolaia Iaffaldano,
  • Maria Pia Santacroce

Journal volume & issue
Vol. 12, no. 1
pp. e5 – e5


Read online

Neuroglia has been historically considered the “glue” of the nervous system, as the ancient Greek name suggests, being simply referred as non-neuronal cells, with supporting functions for neurons in the CNS of mammalian and lower vertebrates. All around the world, approximately 283 cell lines were obtained from fish, yet none of these was from the brain of Sparus aurata, neither in cell lines nor as primary culture. Here we describe a novel in vitro reproducible neuroglial marine model for establishing primary neuroglial cell cultures, by dissociating the whole brain of seabream juveniles. We showed that proliferating neural stem cells produced alongside three generating lineages, such as neuronal precursor cells, astroglial precursor cells and oligodendroglia precursor cells, which developed respectively neurons, astrocytes and oligodendrocytes. The radial glia, finely described by morphological studies and immunochemical antigen expression, showed a peculiar spatial distribution, giving rise simultaneously both to astrocytes and neuronal precursors within a highly proliferative assemblate. Radial glia cells were assessed by glial fibrillary acidic protein (GFAP) and vimentin reactivity, astrocytes by GFAP, neurons by the neuron-specific markers for ubiquitin carboxy-terminal hydrolase 1 (UCHL1) and intermediate filament associated protein (NF), whereas myelinating oligodendrocytes were immunostained with anti-myelin basic protein (MBP) and anti-O4. Our findings suggest that seabream neuroglial cells gain in 3-4 weeks of culturing proliferation, neuroglial differentiation, and oligodendrocyte maturation with myelination, thus disclosing on the possibility that mixed neuroglial cultures can accelerate the maturation of oligodendrocytes and the regeneration of CNS injury in fish.