Effects of Selenium Content on Growth, Antioxidant Activity, and Key Selenium-Enriched Gene Expression in Alfalfa Sprouts
Yaru Ren,
Qian Zhang,
Xiang Li,
Tianyi Zhang,
Daicai Tian,
Liang Liu,
Xuyan Dong,
Zeng-Yu Wang,
Maofeng Chai
Affiliations
Yaru Ren
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Qian Zhang
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Xiang Li
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Tianyi Zhang
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Daicai Tian
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Liang Liu
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
Xuyan Dong
College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China
Zeng-Yu Wang
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Maofeng Chai
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
To enhance the selenium (Se) intake of the general public, the present study implemented biofortification techniques in alfalfa sprouts. Alfalfa sprouts possess unique nutritional value and provide an optimal Se-enriched supplemental Se source. The impact of sodium selenite (Na2SeO3) on alfalfa shoot germination, shoot length, and biomass was assessed experimentally, and changes in the antioxidant capacity of sprouts treated with optimal Se concentrations were investigated. In addition, the transcriptome of alfalfa sprouts treated with the optimal Na2SeO3 concentration was sequenced. Gene co-expression networks, constructed through differential gene analysis and weighted gene co-expression network analysis, were used to identify the core genes responsible for Se enrichment in alfalfa sprouts. The findings of the present study offer novel insights into the effects of Se treatment on the nutrient composition of alfalfa sprouts, in addition to introducing novel methods and references that could facilitate production of Se-enriched alfalfa sprouts and associated products.