Remote Sensing (Jun 2022)

Inter-Annual Climate Variability Impact on Oil Palm Mapping

  • Fernando Troya,
  • Paulo N. Bernardino,
  • Ben Somers

DOI
https://doi.org/10.3390/rs14133104
Journal volume & issue
Vol. 14, no. 13
p. 3104

Abstract

Read online

The contribution of oil palm plantations to the economic growth of tropical developing countries makes it essential to monitor their expansion into the tropical forest; consequently, most studies focus on improving mapping accuracy while using satellite imagery. However, accuracy can be hampered by atmospheric phenomena that can drastically change climatic conditions in tropical regions, affecting the spectral properties of the vegetation. In this sense, we studied the accuracy of palm plantation mapping by using features from different regions of the electromagnetic spectrum and a data fusion approach, and then compared the changes in accuracy over the years 2016, 2017, and 2018 (two of them with reported climatic anomalies). Optical-based maps obtained higher accuracy than thermal- and microwave-based maps, but they were the most affected by inter-annual climate variability (error margin between 5 and 10%), while thermal-based maps were the least affected (error margin between 8 and 9%). Data fusion combinations improved accuracy and reduced dissimilarities between years (e.g., phenology-based map accuracy changed by up to 20.8%, while phenology fused with microwave features changed by up to 6.8%). We conclude that inter-annual climate variability on land-cover mapping should be considered, especially if the outputs will be used as input in future studies.

Keywords