Neurobiology of Disease (Jun 2009)

Oral apolipoprotein A-I mimetic peptide improves cognitive function and reduces amyloid burden in a mouse model of Alzheimer's disease

  • Shaila P. Handattu,
  • David W. Garber,
  • Candyce E. Monroe,
  • Thomas van Groen,
  • Inga Kadish,
  • Gaurav Nayyar,
  • Dongfeng Cao,
  • Mayakonda N. Palgunachari,
  • Ling Li,
  • G.M. Anantharamaiah

Journal volume & issue
Vol. 34, no. 3
pp. 525 – 534

Abstract

Read online

Recent evidence indicates that inflammation may significantly contribute to the pathogenesis of Alzheimer's disease (AD). Since the apo A-I mimetic peptide D-4F has been shown to inhibit atherosclerotic lesion formation and regress already existing lesions (in the presence of pravastatin) and the peptide also decreases brain arteriole inflammation, we undertook a study to evaluate the efficacy of oral D-4F co-administered with pravastatin on cognitive function and amyloid β (Aβ) burden in the hippocampus of APPSwe-PS1ΔE9 mice. Three groups of male mice were administered D-4F and pravastatin, Scrambled D-4F (ScD-4F, a control peptide) and pravastatin in drinking water, while drinking water alone served as control. The escape latency in the Morris Water Maze test was significantly shorter for the D-4F+statin administered animals compared to the other two groups. While the hippocampal region of the brain was covered with 4.2±0.5 and 3.8±0.6% of Aβ load in the control and ScD-4F+statin administered groups, in the D-4F+statin administered group Aβ load was only 1.6±0.1%. Furthermore, there was a significant decrease in the number of activated microglia (p<0.05 vs the other two groups) and activated astrocytes (p<0.05 vs control) upon oral D-4F+statin treatment. Inflammatory markers TNFα and IL-1β levels were decreased significantly in the D-4F+statin group compared to the other two groups (for IL-1β p<0.01 vs the other two groups and for TNF-α p<0.001 vs control) and the expression of MCP-1 were also less in D-4F+statin administered group compared to the other two groups. These results suggest that the apo A-I mimetic peptide inhibits amyloid β deposition and improves cognitive function via exerting anti-inflammatory properties in the brain.

Keywords