Annales Geophysicae (Dec 2020)

Estimating the maximum of the smoothed highest 3-hourly <i>a</i><i>a</i> index in 3&thinsp;d by the preceding minimum for the solar cycle

  • Z. Du,
  • Z. Du

DOI
https://doi.org/10.5194/angeo-38-1237-2020
Journal volume & issue
Vol. 38
pp. 1237 – 1245

Abstract

Read online

Predicting the maximum intensity of geomagnetic activity for an upcoming solar cycle is important in space weather service and for planning future space missions. This study analyzed the highest and lowest 3-hourly aa index (aaH∕aaL) in a 3 d interval, smoothed by 363 d to analyze their variation with the 11-year solar cycle. It is found that the maximum of aaH (aaHmax) is well correlated with the preceding minimum of either aaH (aaHmin, r=0.85) or aaL (aaLmin, r=0.89) for the solar cycle. Based on these relationships, the intensity of aaHmax for solar cycle 25 is estimated to be aaHmax(25)=83.7±6.9 (nT), about 29 % stronger than that of solar cycle 24. This value is equivalent to the ap index of apmax(25)=47.4±4.4 (nT) if employing the high correlation between ap and aa (r=0.93). The maximum of aaL (aaLmax) is also well correlated with the preceding aaHmin (r=0.80). The maximum amplitude of the sunspot cycle (Rm) is much better correlated with high geomagnetic activity (aaHmax, r=0.79) than with low geomagnetic activity (aaLmax, r=0.37). The rise time from aaHmin to aaHmax is weakly anti-correlated to the following aaHmax (r=-0.42). Similar correlations are also found for the 13-month smoothed monthly mean aa index. These results are expected to be useful in understanding the geomagnetic activity intensity of solar cycle 25.