Frontiers in Immunology (Mar 2021)

Interleukin-19 Abrogates Experimental Autoimmune Encephalomyelitis by Attenuating Antigen-Presenting Cell Activation

  • Hiroshi Horiuchi,
  • Bijay Parajuli,
  • Hiroyasu Komiya,
  • Yuki Ogawa,
  • Shijie Jin,
  • Keita Takahashi,
  • Yasu-Taka Azuma,
  • Fumiaki Tanaka,
  • Akio Suzumura,
  • Hideyuki Takeuchi,
  • Hideyuki Takeuchi

DOI
https://doi.org/10.3389/fimmu.2021.615898
Journal volume & issue
Vol. 12

Abstract

Read online

Interleukin-19 (IL-19) acts as a negative-feedback regulator to limit proinflammatory response of macrophages and microglia in autocrine/paracrine manners in various inflammatory diseases. Multiple sclerosis (MS) is a major neuroinflammatory disease in the central nervous system (CNS), but it remains uncertain how IL-19 contributes to MS pathogenesis. Here, we demonstrate that IL-19 deficiency aggravates experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by promoting IL-17-producing helper T cell (Th17 cell) infiltration into the CNS. In addition, IL-19-deficient splenic macrophages expressed elevated levels of major histocompatibility complex (MHC) class II, co-stimulatory molecules, and Th17 cell differentiation-associated cytokines such as IL-1β, IL-6, IL-23, TGF-β1, and TNF-α. These observations indicated that IL-19 plays a critical role in suppression of MS pathogenesis by inhibiting macrophage antigen presentation, Th17 cell expansion, and subsequent inflammatory responses. Furthermore, treatment with IL-19 significantly abrogated EAE. Our data suggest that IL-19 could provide significant therapeutic benefits in patients with MS.

Keywords