Energies (Jun 2023)

Optimal Demand Response Using Battery Storage Systems and Electric Vehicles in Community Home Energy Management System-Based Microgrids

  • Ayesha Abbasi,
  • Kiran Sultan,
  • Sufyan Afsar,
  • Muhammad Adnan Aziz,
  • Hassan Abdullah Khalid

DOI
https://doi.org/10.3390/en16135024
Journal volume & issue
Vol. 16, no. 13
p. 5024

Abstract

Read online

Demand response (DR) strategies are recieving much attention recently for their applications in the residential sector. Electric vehicles (EVs), which are considered to be a fairly new consumer load in the power sector, have opened up new opportunities by providing the active utilization of EVs as a storage unit. Considering their storage capacities, they can be used in vehicle-to-grid (V2G) or vehicle-to-community (V2C) options instead of taking power in peak times from the grid itself. This paper suggests a community-based home energy management system for microgrids to achieve flatter power demand and peak demand shaving using particle swarm optimization (PSO) and user-defined constraints. A dynamic clustered load scheduling scheme is proposed, including a method for managing peak shaving using rules specifically designed for PV systems that are grid-connected alongside battery energy storage systems and electric vehicles. The technique being proposed involves determining the limits of feed-in and demand dynamically, using estimated load demands and profiles of PV power for the following day. Additionally, an optimal rule-based management technique is presented for the peak shaving of utility grid power that sets the charge/discharge schedules of the battery and EV one day ahead. Utilizing the PSO algorithm, the optimal inputs for implementing the rule-based peak shaving management strategy are calculated, resulting in an average improvement of about 7% in percentage peak shaving (PPS) when tested using MATLAB for numerous case studies.

Keywords