Applied Sciences (Jun 2024)
Signal Reconstruction of Arbitrarily Lack of Frequency Bands from Seismic Wavefields Based on Deep Learning
Abstract
Due to the limitations of seismic exploration instruments and the impact of the high frequencies absorption by the earth layers during subsurface propagation of seismic waves, recorded seismic data usually lack high and low frequency information that is needed to accurately image geological structures. Traditional methods face challenges such as limitations of model assumptions and poor adaptability to complex geological conditions. Therefore, this paper proposes a deep learning method that introduces the attention mechanism and Bi-directional gated recurrent unit (BiGRU) into the Transformer neural network. This approach can simultaneously capture both global and local characteristics of time series data, establish mappings between different frequency bands, and achieve information compensation and frequency extension. The results show that the BiGRU-Extended Transformer network is capable of compensating and extending the synthetic seismic data sets with the limited frequency band. It has certain generalization capabilities and stability and can effectively handle various problems in the data reconstruction process, which is better than traditional methods.
Keywords