National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
Yachao Ge
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
Gui Cai
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
Xuan Pan
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
Lin Xu
National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China; Corresponding author
Summary: Seed plants have evolved a complex root system consisting of at least three root types, i.e., adventitious roots, lateral roots, and the primary root. Auxin is the key hormone that controls the initiation of different root types. Here, we show that protein complexes with different combinations of intermediate-clade WUSCHEL-RELATED HOMEOBOXs (IC-WOXs) and class-A AUXIN RESPONSE FACTORs (A-ARFs) initiate the three root types in Arabidopsis thaliana. In adventitious root founder cells from detached leaves, the WOX11-ARF6/8 complex activates RGF1 INSENSITIVEs (RGIs) and LATERAL ORGAN BOUNDARIES DOMAIN 16 (LBD16) to initiate the adventitious root primordium. In lateral root founder cells, ARF7/19 activate RGIs and LBD16 without IC-WOX to initiate the lateral root primordium. In the primary root founder cell (i.e., hypophysis of an embryo), the WOX9-ARF5 complex initiates the primary root by activation of RGIs. Overall, the WOX-ARF modules show a division of labor to initiate different type of roots.