npj Computational Materials (Nov 2021)
Glass transition temperature prediction of disordered molecular solids
Abstract
Abstract Glass transition temperature, T g, is the key quantity for assessing morphological stability and molecular ordering of films of organic semiconductors. A reliable prediction of T g from the chemical structure is, however, challenging, as it is sensitive to both molecular interactions and analysis of the heating or cooling process. By combining a fitting protocol with an automated workflow for forcefield parameterization, we predict T g with a mean absolute error of ~20 °C for a set of organic compounds with T g in the 50–230 °C range. Our study establishes a reliable and automated prescreening procedure for the design of amorphous organic semiconductors, essential for the optimization and development of organic light-emitting diodes.