BMC Plant Biology (May 2012)

Comparative analyses reveal potential uses of <it>Brachypodium distachyon</it> as a model for cold stress responses in temperate grasses

  • Li Chuan,
  • Rudi Heidi,
  • Stockinger Eric J,
  • Cheng Hongmei,
  • Cao Moju,
  • Fox Samuel E,
  • Mockler Todd C,
  • Westereng Bjørge,
  • Fjellheim Siri,
  • Rognli Odd,
  • Sandve Simen R

DOI
https://doi.org/10.1186/1471-2229-12-65
Journal volume & issue
Vol. 12, no. 1
p. 65

Abstract

Read online

Abstract Background Little is known about the potential of Brachypodium distachyon as a model for low temperature stress responses in Pooideae. The ice recrystallization inhibition protein (IRIP) genes, fructosyltransferase (FST) genes, and many C-repeat binding factor (CBF) genes are Pooideae specific and important in low temperature responses. Here we used comparative analyses to study conservation and evolution of these gene families in B. distachyon to better understand its potential as a model species for agriculturally important temperate grasses. Results Brachypodium distachyon contains cold responsive IRIP genes which have evolved through Brachypodium specific gene family expansions. A large cold responsive CBF3 subfamily was identified in B. distachyon, while CBF4 homologs are absent from the genome. No B. distachyon FST gene homologs encode typical core Pooideae FST-motifs and low temperature induced fructan accumulation was dramatically different in B. distachyon compared to core Pooideae species. Conclusions We conclude that B. distachyon can serve as an interesting model for specific molecular mechanisms involved in low temperature responses in core Pooideae species. However, the evolutionary history of key genes involved in low temperature responses has been different in Brachypodium and core Pooideae species. These differences limit the use of B. distachyon as a model for holistic studies relevant for agricultural core Pooideae species.

Keywords