Polymers (Oct 2022)

Fire Retardancy and Dielectric Strength of Cyclotriphosphazene Compounds with Schiff Base and Ester Linking Units Attached to the Electron-Withdrawing Side Arm

  • Siti Nur Khalidah Usri,
  • Zuhair Jamain,
  • Mohamad Zul Hilmey Makmud

DOI
https://doi.org/10.3390/polym14204378
Journal volume & issue
Vol. 14, no. 20
p. 4378

Abstract

Read online

A series of compounds with Schiff base and ester linking units attached to the electron-withdrawing side arm (Cl, NO2, and OH) have been successfully synthesized through four schemes of the chemical route. These compounds were characterized using Fourier Transform Infrared spectroscopy (FTIR), Nuclear Magnetic Resonance spectroscopy (NMR), and Carbon, Hydrogen and Nitrogen (CHN) elemental analysis. The epoxy resin was used as a matrix of molding to observe the refinement of fire-retardant properties of the modified cyclotriphosphazene compounds. The fire-retardant testing was done using Limiting Oxygen Index (LOI). The LOI value of pure epoxy resin was increased from 22.75% to 24.71% when incorporated with 1 wt.% of hexasubstituted cyclotriphosphazene (HCCP). Interestingly, all the final compounds gave a positive increment in the LOI value and the highest LOI value was obtained from the compound containing a nitro side arm with LOI value of 26.90%. In order to understand the thermal stability of these compounds, Thermogravimetric Analysis (TGA) was carried out. The compound with the nitro group at the terminal end has the highest char residue which is 34.2% at 700 °C. This indicated that the presence of the nitro withdrawing group was able to enhance the fire retardancy of the materials. Based on SEM observation, the shape of the final compound’s char residue demonstrated the formation of a porous protective layer with a dense surface. The dielectric property was conducted according to ASTM D149 AC breakdown voltage to determine its dielectric strength. The results showed that the highest dielectric strength value belonged to the compound containing a nitro group side arm with 24.41 kV/mm−1 due to the π electron delocalization.

Keywords