Cancer Cell International (May 2020)

Circular RNA circ-CSPP1 regulates CCNE2 to facilitate hepatocellular carcinoma cell growth via sponging miR-577

  • Qian Sun,
  • Rui Yu,
  • Chunfeng Wang,
  • Jianning Yao,
  • Lianfeng Zhang

DOI
https://doi.org/10.1186/s12935-020-01287-8
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Objective Circ-centro-some/spindle pole-associated protein (CSPP1) has been confirmed to be characterized in diverse human malignancies and its ectopic expression may regulate tumor progression and development. However, in hepatocellular carcinoma (HCC), its biological role, clinical significance and molecular mechanism are still unclear. Methods Circ-CSPP1 expression and its prognostic values in HCC tissues were detected by qRT-PCR or in situ hybridization (ISH), and enriched by using Rnase R. The functional experiments (Circ-CSPP1 was overexpressed or knocked down) were performed in HCC cells. The HCC cell growth was analyzed by CCK-8 assay, transwell, wound healing and colony formation assays. The interation between circ-CSPP1 and miR-577/miR-577 and cyclin E2 (CCNE2) were determined by dual luciferase assay or RNA binding protein immunoprecipitation (RIP) assay. The RNA fluorescence in situ hybridization (FISH) assay was used to detect the subcellular distribution. Finally, an in vivo nude mouse tumor model was constructed. Results In HCC patients and cells, circ-CSPP1 was aberrantly expressed, and its upregulation predicted poor prognosis, and closely correlated with tumor size and TNM stage. Circ-CSPP1 resisted RnaseR digestion, indicating it is a circular RNA structure. Moreover, overexpression of circ-CSPP1 promoted HCC cell viability, colony formation, migration, and invasion in vitro. Knockdown of circ-CSPP1 showed contrary results. Circ-CSPP1 acts as a miR-577 sponge and positively regulated the target of miR-577, CCNE2. Besides, miR-577 inhibitor rescued the suppressive effects of circ-CSPP1 knockdown on HCC cell growth, whereas was completely reversed by silencing of CCNE2. Finally, the in vivo experiments confirmed that circ-CSPP1 knockdown regulated xenograft tumor volume and downregulated CCNE2, p-Rb, E2F1 and c-myc expression. Conclusion These findings revealed that circ-CSPP1 contributed to HCC progression by positively regulating CCNE2 via miR-577, thus established its potential as new a prognostic and therapeutic marker for HCC patients.

Keywords