Nihon Kikai Gakkai ronbunshu (May 2015)
Gurney flap effect using jet induced by plasma actuator
Abstract
Lift and drag variations by plasma actuators have been investigated under flow at low Reynolds numbers ranging from 1.7×104 to 6.6×104. Wall-normal-jet type and counter-jet type plasma actuators are attached on the pressure surface near the trailing edge of NACA0015 airfoil, and jets are induced from x/c = 0.9 toward wall normal and opposite directions against the main flow. Appreciable variations of lift and drag coefficients are not observed in the case of flow control by the wall-normal-jet type plasma actuator. On the other hand, it is confirmed that the counter-jet type plasma actuator is effective for improving aerodynamic characteristics. As the most effective case at Re = 3.3 ×104, lift coefficient is enlarged up to 30% under lower angles of attack α ≤ 8°, and velocity distributions analyzed by PIV shows that flow near the trailing edge accelerates to y-axis negative direction. Effects of lift enhancement by counter-jet type plasma actuator tend to fall off with increasing Re. Lift and drag coefficients of NACA0015 with conventional Gurney flap (h/c = 0.03) are also compared with that by the counter-jet type plasma actuator. It is found that the lift enhancement by Gurney flap is effective over a wide range of angle of α, but counter-jet type plasma actuator suppresses enlargements of drag coefficient in high α.
Keywords