Journal of Pathology Informatics (Jan 2023)

Chronic kidney disease prediction based on machine learning algorithms

  • Md. Ariful Islam,
  • Md. Ziaul Hasan Majumder,
  • Md. Alomgeer Hussein

Journal volume & issue
Vol. 14
p. 100189

Abstract

Read online

Chronic kidney disease (CKD) is a dangerous ailment that can last a person’s entire life and is caused by either kidney malignancy or decreased kidney functioning. It is feasible to halt or slow the progression of this chronic disease to an end-stage wherein dialysis or surgical intervention is the only method to preserve a patient’s life. Earlier detection and appropriate therapy can increase the likelihood of this happening. Throughout this research, the potential of several different machine learning approaches for providing an early diagnosis of CKD has been investigated. There has been a significant amount of research conducted on this topic. Nevertheless, we are bolstering our approach by making use of predictive modeling. Therefore, in our approach, we investigate the link that exists between data factors as well as the characteristics of the target class. We are capable of constructing a collection of prediction models with the help of machine learning and predictive analytics, thanks to the better measures of attributes that can be introduced using predictive modeling. This study starts with 25 variables in addition to the class property, but by the end, it has narrowed the list down to 30% of those parameters as the best subset to identify CKD. Twelve different machine learning-based classifiers have been tested in a supervised learning environment. Within the confines of a supervised learning environment, a total of 12 different machine learning-based classifiers have indeed been examined, with the greatest performance indicators being an accuracy of 0.983, a precision of 0.98, a recall of 0.98, and an F1-score of 0.98 for the XgBoost classifier. The way the research was done leads to the conclusion that recent improvements in machine learning, along with the help of predictive modeling, make for an interesting way to find new solutions that can then be used to test the accuracy of prediction in the field of kidney disease and beyond.

Keywords