Alzheimer’s Research & Therapy (Jan 2021)

AlzGPS: a genome-wide positioning systems platform to catalyze multi-omics for Alzheimer’s drug discovery

  • Yadi Zhou,
  • Jiansong Fang,
  • Lynn M. Bekris,
  • Young Heon Kim,
  • Andrew A. Pieper,
  • James B. Leverenz,
  • Jeffrey Cummings,
  • Feixiong Cheng

DOI
https://doi.org/10.1186/s13195-020-00760-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 13

Abstract

Read online

Abstract Background Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor. Methods In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer’s Drug Discovery, https://alzgps.lerner.ccf.org ), a comprehensive systems biology tool to enable searching, visualizing, and analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target identification and development of effective prevention and treatment for AD. Results Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype); (2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting drug’s mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for database browsing and network visualization. Conclusions Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic development in AD.

Keywords