Metals (May 2025)
Production of ZnO Nanofibers from Zinc Galvanizing Flue Dust
Abstract
This work focuses on the production of ceramic nanofibers from waste materials, which represents a significant contribution to the sustainable use of resources and innovative solutions in the field of nanotechnology. The research builds on existing knowledge of nanofiber production, with a specific focus on the use of zinc galvanizing flue dust. The main objective of the study is to explore the possibilities of converting zinc-containing waste materials into ceramic nanofibers, introducing a new direction in nanotechnology. Laboratory experiments involved leaching processes and electrostatic spinning processes of zinc solutions. From the obtained results, it can be concluded that ZnO ceramic nanofibers produced from both synthetic and real solutions exhibit similar fiber structures. Therefore, it can be stated that both acids (HCl and H2SO4) are suitable for preparation. Among them, 0.5 M HCl is the most ideal, resulting in oval fibers with a rough and coarse surface, while 0.5 M H2SO4 produces fibers with a different morphology in the form of hollow ribbons, which are presumed to have a higher specific surface area. Thus, it can be concluded that the production of ceramic nanofibers from zinc galvanizing flue dust is feasible and effective, with electrostatic spinning proving to be a low-waste technology. The study also examines the influence of contaminants from real waste solutions on the production of ceramic nanofibers and compares their properties with nanofibers obtained from synthetic solutions. Experimental results suggest that contaminants in real solutions did not have a negative impact on the morphology of the prepared ZnO nanofibers. In conclusion, the production of ZnO ceramic nanofibers from waste offers a promising approach for the future development of nanotechnology, combining innovation with sustainability and efficient resource utilization.
Keywords