Plants (Jul 2023)

Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy

  • Veronika Sedláková,
  • Sanja Ćavar Zeljković,
  • Nikola Štefelová,
  • Petr Smýkal,
  • Pavel Hanáček

DOI
https://doi.org/10.3390/plants12142687
Journal volume & issue
Vol. 12, no. 14
p. 2687

Abstract

Read online

The physical dormancy of seeds is likely to be mediated by the chemical composition and the thickness of the seed coat. Here, we investigate the link between the content of phenylpropanoids (i.e., phenolics and flavonoids) present in the chickpea seed coat and dormancy. The relationship between selected phenolic and flavonoid metabolites of chickpea seed coats and dormancy level was assessed using wild and cultivated chickpea parental genotypes and a derived population of recombinant inbred lines (RILs). The selected phenolic and flavonoid metabolites were analyzed via the LC-MS/MS method. Significant differences in the concentration of certain phenolic acids were found among cultivated (Cicer arietinum, ICC4958) and wild chickpea (Cicer reticulatum, PI489777) parental genotypes. These differences were observed in the contents of gallic, caffeic, vanillic, syringic, p-coumaric, salicylic, and sinapic acids, as well as salicylic acid-2-O-β-d-glucoside and coniferaldehyde. Additionally, significant differences were observed in the flavonoids myricetin, quercetin, luteolin, naringenin, kaempferol, isoorientin, orientin, and isovitexin. When comparing non-dormant and dormant RILs, significant differences were observed in gallic, 3-hydroxybenzoic, syringic, and sinapic acids, as well as the flavonoids quercitrin, quercetin, naringenin, kaempferol, and morin. Phenolic acids were generally more highly concentrated in the wild parental genotype and dormant RILs. We compared the phenylpropanoid content of chickpea seed coats with related legumes, such as pea, lentil, and faba bean. This information could be useful in chickpea breeding programs to reduce dormancy.

Keywords