Mathematics (Jul 2023)

Bertrand’s Paradox Resolution and Its Implications for the Bing–Fisher Problem

  • Richard A. Chechile

DOI
https://doi.org/10.3390/math11153282
Journal volume & issue
Vol. 11, no. 15
p. 3282

Abstract

Read online

Bertrand’s paradox is a problem in geometric probability that has resisted resolution for more than one hundred years. Bertrand provided three seemingly reasonable solutions to his problem — hence the paradox. Bertrand’s paradox has also been influential in philosophical debates about frequentist versus Bayesian approaches to statistical inference. In this paper, the paradox is resolved (1) by the clarification of the primary variate upon which the principle of maximum entropy is employed and (2) by imposing constraints, based on a mathematical analysis, on the random process for any subsequent nonlinear transformation to a secondary variable. These steps result in a unique solution to Bertrand’s problem, and this solution differs from the classic answers that Bertrand proposed. It is shown that the solutions proposed by Bertrand and others reflected sampling processes that are not purely random. It is also shown that the same two steps result in the resolution of the Bing–Fisher problem, which has to do with the selection of a consistent prior for Bayesian inference. The resolution of Bertrand’s paradox and the Bing–Fisher problem rebuts philosophical arguments against the Bayesian approach to statistical inference, which were based on those two ostensible problems.

Keywords