Orphanet Journal of Rare Diseases (Mar 2024)
Cardiovascular disease in Alpha 1 antitrypsin deficiency: an observational study assessing the role of neutrophil proteinase activity and the suitability of validated screening tools
Abstract
Abstract Background Alpha 1 Antitrypsin Deficiency (AATD) is a rare, inherited lung disease which shares features with Chronic Obstructive Pulmonary Disease (COPD) but has a greater burden of proteinase related tissue damage. These proteinases are associated with cardiovascular disease (CVD) in the general population. It is unclear whether patients with AATD have a greater risk of CVD compared to usual COPD, how best to screen for this, and whether neutrophil proteinases are implicated in AATD-associated CVD. This study had three aims. To compare CVD risk in never-augmented AATD patients to non-AATD COPD and healthy controls (HC). To assess relationships between CVD risk and lung physiology. To determine if neutrophil proteinase activity was associated with CVD risk in AATD. Cardiovascular risk was assessed by QRISK2® score and aortic stiffness measurements using carotid-femoral (aortic) pulse wave velocity (aPWV). Medical history, computed tomography scans and post-bronchodilator lung function parameters were reviewed. Systemic proteinase 3 activity was measured. Patients were followed for 4 years, to assess CVD development. Results 228 patients with AATD, 50 with non-AATD COPD and 51 healthy controls were recruited. In all COPD and HC participants, QRISK2® and aPWV gave concordant results (with both measures either high or in the normal range). This was not the case in AATD. Once aPWV was adjusted for age and smoking history, aPWV was highest and QRISK2® lowest in AATD patients compared to the COPD or HC participants. Higher aPWV was associated with impairments in lung physiology, the presence of emphysema on CT scan and proteinase 3 activity following adjustment for age, smoking status and traditional CVD risk factors (using QRISK2® scores) in AATD. There were no such relationships with QRISK2® in AATD. AATD patients with confirmed CVD at four-year follow up had a higher aPWV but not QRISK2® at baseline assessment. Conclusion aPWV measured CVD risk is elevated in AATD. This risk is not captured by QRISK2®. There is a relationship between aPWV, lung disease and proteinase-3 activity. Proteinase-driven breakdown of elastin fibres in large arteries and lungs is a putative mechanism and forms a potential therapeutic target for CVD in AATD.
Keywords