Energies (Aug 2020)
A Wide-Adjustable Sensorless IPMSM Speed Drive Based on Current Deviation Detection under Space-Vector Modulation
Abstract
This paper investigates the implementation of a wide-adjustable sensorless interior permanent magnet synchronous motor drive based on current deviation detection under space-vector modulation. A hybrid method that includes a zero voltage vector current deviation and an active voltage vector current deviation under space-vector pulse-width modulation is proposed to determine the rotor position. In addition, the linear transition algorithm between the two current deviation methods is investigated to obtain smooth speed responses at various operational ranges, including at a standstill and at different operating speeds, from 0 to 3000 rpm. A predictive speed-loop controller is proposed to improve the transient, load disturbance, and tracking responses for the sensorless interior permanent magnet synchronous motor (IPMSM) drive system. The computations of the position estimator and control algorithms are implemented by using a digital signal processor (DSP), TMS-320F-2808. Several experimental results are provided to validate the theoretical analysis.
Keywords