Atmospheric Measurement Techniques (Jan 2021)
Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO<sub>2</sub> measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks
- T. Verhoelst,
- S. Compernolle,
- G. Pinardi,
- J.-C. Lambert,
- H. J. Eskes,
- K.-U. Eichmann,
- A. M. Fjæraa,
- J. Granville,
- S. Niemeijer,
- A. Cede,
- A. Cede,
- A. Cede,
- M. Tiefengraber,
- M. Tiefengraber,
- F. Hendrick,
- A. Pazmiño,
- A. Bais,
- A. Bazureau,
- K. F. Boersma,
- K. F. Boersma,
- K. Bognar,
- A. Dehn,
- S. Donner,
- A. Elokhov,
- M. Gebetsberger,
- M. Gebetsberger,
- F. Goutail,
- M. Grutter de la Mora,
- A. Gruzdev,
- M. Gratsea,
- G. H. Hansen,
- H. Irie,
- N. Jepsen,
- Y. Kanaya,
- D. Karagkiozidis,
- R. Kivi,
- K. Kreher,
- P. F. Levelt,
- P. F. Levelt,
- C. Liu,
- M. Müller,
- M. Müller,
- M. Navarro Comas,
- A. J. M. Piters,
- J.-P. Pommereau,
- T. Portafaix,
- C. Prados-Roman,
- O. Puentedura,
- R. Querel,
- J. Remmers,
- A. Richter,
- J. Rimmer,
- C. Rivera Cárdenas,
- L. Saavedra de Miguel,
- V. P. Sinyakov,
- W. Stremme,
- K. Strong,
- M. Van Roozendael,
- J. P. Veefkind,
- T. Wagner,
- F. Wittrock,
- M. Yela González,
- C. Zehner
Affiliations
- T. Verhoelst
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- S. Compernolle
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- G. Pinardi
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- J.-C. Lambert
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- H. J. Eskes
- Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the Netherlands
- K.-U. Eichmann
- Institute of Environmental Physics (IUP), University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- A. M. Fjæraa
- Norsk Institutt for Luftforskning (NILU), Instituttveien 18, 2007 Kjeller, Norway
- J. Granville
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- S. Niemeijer
- Science & Technology Corporation (S&T), Delft, the Netherlands
- A. Cede
- Goddard Space Flight Center (NASA/GSFC), Greenbelt, MD, USA
- A. Cede
- LuftBlick, Kreith, Austria
- A. Cede
- Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
- M. Tiefengraber
- LuftBlick, Kreith, Austria
- M. Tiefengraber
- Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
- F. Hendrick
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- A. Pazmiño
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ Université Paris-Saclay/Sorbonne Université/CNRS, Guyancourt, France
- A. Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
- A. Bazureau
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ Université Paris-Saclay/Sorbonne Université/CNRS, Guyancourt, France
- K. F. Boersma
- Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the Netherlands
- K. F. Boersma
- Meteorology and Air Quality group, Wageningen University, 6700 AA Wageningen, the Netherlands
- K. Bognar
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
- A. Dehn
- European Space Agency/Centre for Earth Observation (ESA/ESRIN), Frascati, Italy
- S. Donner
- Max-Planck-Institut für Chemie (MPI-C), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
- A. Elokhov
- A.M. Obukhov Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, Moscow, Russian Federation
- M. Gebetsberger
- LuftBlick, Kreith, Austria
- M. Gebetsberger
- Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
- F. Goutail
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ Université Paris-Saclay/Sorbonne Université/CNRS, Guyancourt, France
- M. Grutter de la Mora
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- A. Gruzdev
- A.M. Obukhov Institute of Atmospheric Physics (IAP), Russian Academy of Sciences, Moscow, Russian Federation
- M. Gratsea
- National Observatory of Athens, Lofos Nymphon – Thissio, P.O. Box 20048 – 11810, Athens, Greece
- G. H. Hansen
- Norsk Institutt for Luftforskning (NILU), P.O. Box 6606 Langnes, 9296 Tromsø, Norway
- H. Irie
- Center for Environmental Remote Sensing, Chiba University (Chiba U), Chiba, Japan
- N. Jepsen
- Danish Meteorological Institute (DMI), Lyngbyvej 100, 2100 Copenhagen, Denmark
- Y. Kanaya
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokohama, Japan
- D. Karagkiozidis
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
- R. Kivi
- Space and Earth Observation Centre, Finnish Meteorological Institute, Tähteläntie 62, 99600 Sodankylä, Finland
- K. Kreher
- BK Scientific GmbH, Astheimerweg 42, 55130 Mainz, Germany
- P. F. Levelt
- Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the Netherlands
- P. F. Levelt
- University of Technology Delft, Mekelweg 5, 2628 CD Delft, the Netherlands
- C. Liu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230026, China
- M. Müller
- LuftBlick, Kreith, Austria
- M. Müller
- Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
- M. Navarro Comas
- Atmospheric Research and Instrumentation, National Institute for Aerospace Technology (INTA), Madrid, 28850, Spain
- A. J. M. Piters
- Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the Netherlands
- J.-P. Pommereau
- Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), UVSQ Université Paris-Saclay/Sorbonne Université/CNRS, Guyancourt, France
- T. Portafaix
- Laboratoire de l'Atmosphère et des Cyclones (LACy), Université de La Réunion, Saint-Denis, France
- C. Prados-Roman
- Atmospheric Research and Instrumentation, National Institute for Aerospace Technology (INTA), Madrid, 28850, Spain
- O. Puentedura
- Atmospheric Research and Instrumentation, National Institute for Aerospace Technology (INTA), Madrid, 28850, Spain
- R. Querel
- National Institute of Water and Atmospheric Research (NIWA), Private Bag 50061, Omakau, Central Otago, New Zealand
- J. Remmers
- Max-Planck-Institut für Chemie (MPI-C), Hahn-Meitner-Weg 1, 55128 Mainz, Germany
- A. Richter
- Institute of Environmental Physics (IUP), University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- J. Rimmer
- University of Manchester, Oxford Rd, Manchester, M13 9PL, United Kingdom
- C. Rivera Cárdenas
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- L. Saavedra de Miguel
- European Space Agency/Centre for Earth Observation (ESA/ESRIN), Frascati, Italy
- V. P. Sinyakov
- Kyrgyz National University of Jusup Balasagyn (KNU), 547 Frunze Str., Bishkek, Kyrgyz Republic
- W. Stremme
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- K. Strong
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
- M. Van Roozendael
- Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Ringlaan 3, 1180 Uccle, Belgium
- J. P. Veefkind
- Royal Netherlands Meteorological Institute (KNMI), Utrechtseweg 297, 3730 AE De Bilt, the Netherlands
- T. Wagner
- Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada
- F. Wittrock
- Institute of Environmental Physics (IUP), University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- M. Yela González
- BK Scientific GmbH, Astheimerweg 42, 55130 Mainz, Germany
- C. Zehner
- Meteorology and Air Quality group, Wageningen University, 6700 AA Wageningen, the Netherlands
- DOI
- https://doi.org/10.5194/amt-14-481-2021
- Journal volume & issue
-
Vol. 14
pp. 481 – 510
Abstract
This paper reports on consolidated ground-based validation results of the atmospheric NO2 data produced operationally since April 2018 by the TROPOspheric Monitoring Instrument (TROPOMI) on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5P) satellite. Tropospheric, stratospheric, and total NO2 column data from S5P are compared to correlative measurements collected from, respectively, 19 Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), 26 Network for the Detection of Atmospheric Composition Change (NDACC) Zenith-Scattered-Light DOAS (ZSL-DOAS), and 25 Pandonia Global Network (PGN)/Pandora instruments distributed globally. The validation methodology gives special care to minimizing mismatch errors due to imperfect spatio-temporal co-location of the satellite and correlative data, e.g. by using tailored observation operators to account for differences in smoothing and in sampling of atmospheric structures and variability and photochemical modelling to reduce diurnal cycle effects. Compared to the ground-based measurements, S5P data show, on average, (i) a negative bias for the tropospheric column data, of typically −23 % to −37 % in clean to slightly polluted conditions but reaching values as high as −51 % over highly polluted areas; (ii) a slight negative median difference for the stratospheric column data, of about −0.2 Pmolec cm−2, i.e. approx. −2 % in summer to −15 % in winter; and (iii) a bias ranging from zero to −50 % for the total column data, found to depend on the amplitude of the total NO2 column, with small to slightly positive bias values for columns below 6 Pmolec cm−2 and negative values above. The dispersion between S5P and correlative measurements contains mostly random components, which remain within mission requirements for the stratospheric column data (0.5 Pmolec cm−2) but exceed those for the tropospheric column data (0.7 Pmolec cm−2). While a part of the biases and dispersion may be due to representativeness differences such as different area averaging and measurement times, it is known that errors in the S5P tropospheric columns exist due to shortcomings in the (horizontally coarse) a priori profile representation in the TM5-MP chemical transport model used in the S5P retrieval and, to a lesser extent, to the treatment of cloud effects and aerosols. Although considerable differences (up to 2 Pmolec cm−2 and more) are observed at single ground-pixel level, the near-real-time (NRTI) and offline (OFFL) versions of the S5P NO2 operational data processor provide similar NO2 column values and validation results when globally averaged, with the NRTI values being on average 0.79 % larger than the OFFL values.