Data in Brief (Dec 2022)
Dataset of transcriptomic changes that occur in human preadipocytes over a 3-day course of exposure to 3,3′,4,4′,5-Pentachlorobiphenyl (PCB126)
Abstract
Exposure to polychlorinated biphenyls (PCBs) has been associated with the development of metabolic syndrome, a cluster of diseases that includes obesity, diabetes, liver steatosis, and cardiovascular problems. PCBs accumulate and fat and are known to act on adipocytes and their precursors, termed preadipocytes. The PCB congener, PCB126, has been shown to activate the aryl hydrocarbon receptor (AhR) as well as proinflammatory genes. Here, we used RNAseq to assess gene transcript changes that occur in PCB126-exposed human preadipocytes over a time course. RNA was collected from 4 replicates of PCB126-exposed and control-treated preadipocytes at 9 h, 24 h, and 72 h post-exposure. RNA was processed for RNAseq analysis using a NovaSeq 6000 with an obtained minimum of 25 million paired-end 50 bp reads per sample. Reads were aligned using the salmon aligner and transcript expression values were summarized to the gene level using tximport. Gene transcript level counts comparing treated- versus control-treated cells were used for differential expression analysis using DESeq2. Differential expression Excel tables (one for each time point) were generated displaying average differential expression (log2 fold change) of the 4 replicates of treated versus control samples with cutoffs of 0.3 log2 fold change (increase or decrease) and p-values of less than 0.05. FastQ, raw, and differential expression tables were uploaded to GEO. A heat map of genes that were changed in common across all time points was generated using GraphPrism. The data generated from this analysis provides a full transcriptional profile of changes that occur over time in preadipocytes that have been exposed to PCB126. The rich datasets can be mined by other researchers to understand how PCB126 and other dioxin-like compounds, including other PCB congeners such as PCB77 and PCB118, affect biological pathways in preadipocytes and other cell types to cause disease.