Frontiers in Medicine (Jan 2024)

Deep-STP: a deep learning-based approach to predict snake toxin proteins by using word embeddings

  • Hasan Zulfiqar,
  • Zhiling Guo,
  • Ramala Masood Ahmad,
  • Zahoor Ahmed,
  • Peiling Cai,
  • Xiang Chen,
  • Yang Zhang,
  • Hao Lin,
  • Zheng Shi

DOI
https://doi.org/10.3389/fmed.2023.1291352
Journal volume & issue
Vol. 10

Abstract

Read online

Snake venom contains many toxic proteins that can destroy the circulatory system or nervous system of prey. Studies have found that these snake venom proteins have the potential to treat cardiovascular and nervous system diseases. Therefore, the study of snake venom protein is conducive to the development of related drugs. The research technologies based on traditional biochemistry can accurately identify these proteins, but the experimental cost is high and the time is long. Artificial intelligence technology provides a new means and strategy for large-scale screening of snake venom proteins from the perspective of computing. In this paper, we developed a sequence-based computational method to recognize snake toxin proteins. Specially, we utilized three different feature descriptors, namely g-gap, natural vector and word 2 vector, to encode snake toxin protein sequences. The analysis of variance (ANOVA), gradient-boost decision tree algorithm (GBDT) combined with incremental feature selection (IFS) were used to optimize the features, and then the optimized features were input into the deep learning model for model training. The results show that our model can achieve a prediction performance with an accuracy of 82.00% in 10-fold cross-validation. The model is further verified on independent data, and the accuracy rate reaches to 81.14%, which demonstrated that our model has excellent prediction performance and robustness.

Keywords