Case Studies in Thermal Engineering (Dec 2024)

A molecular dynamic study of the boiling heat transfer on a liquid metal surface with different thicknesses

  • Zhiming Xu,
  • Hongtao Feng,
  • Yuting Jia,
  • Jingtao Wang

Journal volume & issue
Vol. 64
p. 105505

Abstract

Read online

The impact of the thickness on the boiling phenomena of the water film on the liquid metal surface is compared, and various mechanisms are analyzed, using a molecular dynamics simulation. The findings demonstrated that the best heat transfer performance between the liquid metal surface and water film is obtained when employing a thickness of 9.56 Å, along with a shorter boiling time. Additionally, the boiling time on each surface was further accurately characterized by considering and examining the water film motion and the temperature distribution, in addition to comparing the kinetic energy and potential energy of the system. Also, the surface thickness affected the fluctuation of the liquid metal, the interfacial thermal conductance, and the interfacial thermal resistance. The thicker the liquid metal, the greater the fluctuation. However, a liquid metal surface with a thickness of 9.56 Å is characterized by a larger average interfacial thermal conductance, a smaller average interfacial thermal resistance. Based on the analysis, the difference in boiling time among the different cases was due to the combined effect of fluctuation, interfacial thermal conductance, and interfacial thermal resistance. The results enlighten new ideas and methods for augmenting the efficiency of boiling heat transfer.

Keywords