Plants (Sep 2023)

Continuous Cropping Inhibits Photosynthesis of <i>Polygonatum odoratum</i>

  • Yan Wang,
  • Yunyun Zhou,
  • Jing Ye,
  • Chenzhong Jin,
  • Yihong Hu

DOI
https://doi.org/10.3390/plants12193374
Journal volume & issue
Vol. 12, no. 19
p. 3374

Abstract

Read online

Polygonatum odoratum (Mill.) Druce possesses widespread medicinal properties; however, the continuous cropping (CC) often leads to a severe consecutive monoculture problem (CMP), ultimately causing a decline in yield and quality. Photosynthesis is the fundamental process for plant growth development. Improving photosynthesis is one of the most promising approaches to increase plant yields. To better understand how P. odoratum leaves undergo photosynthesis in response to CC, this study analyzed the physiochemical indexes and RNA-seq. The physiochemical indexes, such as the content of chlorophyll (chlorophyll a, b, and total chlorophyll), light response curves (LRCs), and photosynthetic parameters (Fv/Fm, Fv/F0, Fm/F0, Piabs, ABS/RC, TRo/RC, ETo/RC, and DIo/RC) were all changed in P. odoratum under the CC system. Furthermore, 13,798 genes that exhibited differential expression genes (DEGs) were identified in the P. odoratum leaves of CC and first cropping (FC) plants. Among them, 7932 unigenes were upregulated, while 5860 unigenes were downregulated. Here, the DEGs encoding proteins associated with photosynthesis and carbon assimilation showed a significant decrease in expression under the CC system, such as the PSII protein complex, PSI protein complex, Cytochorome b6/f complex, the photosynthetic electron transport chain, light-harvesting chlorophyll protein complex, and Calvin cycle, etc., -related gene. This study demonstrates that CC can suppress photosynthesis and carbon mechanism in P. odoratum, pinpointing potential ways to enhance photosynthetic efficiency in the CC of plants.

Keywords