Econometrics (Nov 2022)

Detecting and Quantifying Structural Breaks in Climate

  • Neil R. Ericsson,
  • Mohammed H. I. Dore,
  • Hassan Butt

DOI
https://doi.org/10.3390/econometrics10040033
Journal volume & issue
Vol. 10, no. 4
p. 33

Abstract

Read online

Structural breaks have attracted considerable attention recently, especially in light of the financial crisis, Great Recession, the COVID-19 pandemic, and war. While structural breaks pose significant econometric challenges, machine learning provides an incisive tool for detecting and quantifying breaks. The current paper presents a unified framework for analyzing breaks; and it implements that framework to test for and quantify changes in precipitation in Mauritania over 1919–1997. These tests detect a decline of one third in mean rainfall, starting around 1970. Because water is a scarce resource in Mauritania, this decline—with adverse consequences on food production—has potential economic and policy consequences.

Keywords