Xibei Gongye Daxue Xuebao (Apr 2018)
Vibration Mitigation of the Barge-Type Offshore Wind Turbine with a Tuned Mass Damper on Floating Platform
Abstract
This paper evaluates the application of a passive control technique with a tuned mass damper on platform for the barge-type offshore wind turbine. First of all, the three degrees of freedom mathematical model for the floating wind turbine is established based on Lagrange's equations, and the Levenberg-Marquardt algorithm is adopted to estimate the parameters of the wind turbine. Then, the method of frequency tuning which is utilized in engineering projects and genetic algorithm are employed respectively to simulate the optimum parameters of the tuned mass damper. The vibration mechanism about the phase-angle difference between tuned mass damper and floating platform is analyzed. Finally, the dynamic responses of floating wind turbine with/without tuned mass damper are calculated under five typical wind and wave load cases, and the vibration mitigation effects are researched in marine environment. Partial ballast is substituted by the equal mass of tuned mass damper due to the mass of floating platform with tuned mass damper would increase obviously, which would change the design of the wind turbine, and the vibration mitigation is also simulated in five typical load cases. The results show that the suppression rate of standard deviation of platform pitch is up to 47.95%, after substituting the partial mass of ballast, the suppression rate is 50%. Therefore, the dynamic responses of the barge-type floating wind turbine would be reduced significantly when the ballast is replaced by the equal mass of the tuned mass damper on floating platform.
Keywords