BMC Anesthesiology (Apr 2022)

Dexmedetomidine improved one-lung ventilation-induced cognitive dysfunction in rats

  • Mengyun Li,
  • Zhe Jin,
  • Jia Zhan,
  • Yanlin Wang,
  • Kai Chen

DOI
https://doi.org/10.1186/s12871-022-01658-w
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background One-lung ventilation (OLV) is widely used in thoracic surgery. However, OLV may also increase CERO2 and aggravate delayed cognitive recovery. Here, we aimed to investigate the effect of dexmedetomidine (DEX) on cognitive function in rats undergoing OLV. Methods Sprague-Dawley rats were randomly divided into two-lung ventilation (TLV) group, OLV group and OLV treated with DEX group. Group DEX received 25 μg/kg DEX i.p. 30 min before induction. After mechanical ventilation (MV), Morris water maze (MWM) test was carried out to examine spatial memory function. Western blotting was used to detect pERK1/2, pCREB, Bcl-2 and BAX in hippocampal tissues. Transmission electron microscopy (TEM) was used to observe the hippocampal CA1 region. Results Post-MV, compared with group OLV, group DEX showed increases in percentage of target quadrant time (P < 0.05), platform crossings (P < 0.05), a reduction in CERO2 (P < 0.05), and pERK1/2, pCREB, and Bcl-2 significantly increased (P < 0.01 or P < 0.05), while BAX significantly decreased (P < 0.01), besides, a less damaged synaptic structure was observed in group DEX. Conclusions DEX improved post-MV cognitive function in rats undergoing OLV, reduced cerebral oxygen consumption, protected synaptic structure and upregulated ERK1/2-CREB anti-apoptotic signaling pathway in hippocampal CA1 region.

Keywords