Molecular Cytogenetics (Apr 2022)

Genome wide noninvasive prenatal testing detects microduplication of the distal end of chromosome 15 in a fetus: a case report

  • Hana Sahinbegovic,
  • Stephanie Andres,
  • Sabine Langer-Freitag,
  • Aspasia Divane,
  • Fotini Ieremiadou,
  • Senad Mehmedbasic,
  • Aida Catic

DOI
https://doi.org/10.1186/s13039-022-00592-3
Journal volume & issue
Vol. 15, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background Noninvasive prenatal testing (NIPT) is the most recent modality widely used in prenatal diagnostics. Commercially available NIPT has high sensitivity and specificity for the common fetal chromosomal aneuploidies. As future advancements in NIPT sequencing technology are becoming promising and more reliable, the ability to detect beyond aneuploidies and to expand detection of submicroscopic genomic alterations, as well as single-gene disorders might become possible. Case presentation Here we present a case of a 34-year-old pregnant woman, G2P1, who had NIPT screening which detected a terminal microduplication of 10.34 Mb on the long arm of chromosome 15 (15q26.1q26.3). Subsequent prenatal diagnostic testing including karyotype, microarray and fluorescence in situ hybridization (FISH) analyses were performed. Microarray testing confirmed and particularized a copy number gain of 10.66 Mb of the distal end of the long arm of chromosome 15. The G-banding cytogenetic studies yielded results consistent with unbalanced translocation between chromosome 15 and 18. To further characterize the abnormality involving the long arm of chromosome 18 and to map the genomic location of the duplicated 15q more precisely, FISH analysis using specific sub-telomeric probes was performed. FISH analysis confirmed that the extra duplicated segment of chromosome 15 is translocated onto the distal end of the long arm of chromosome 18 at band 18q23. Parental karyotype and FISH studies were performed to see if this unbalanced rearrangement was inherited from a healthy balanced translocation carrier versus being a de novo finding. Parental chromosomal analysis provided no evidence of a rearrangement between chromosome 15 and chromosome 18. The final fetal karyotype was reported as 46,XX,der(18)t(15;18)(q26.2;q23)dn. Conclusions In this case study, the microduplication of fetal chromosome 15q26.1q26.3 was accurately detected using NIPT. Our results suggest that further refinements in NIPT have the potential to evolve to a powerful and efficient screening method, which might be used to detect a broad range of chromosomal imbalances. Since microduplications and microdeletions are a potential reportable result with NIPT, this must be included in pre-test counseling. Prenatal diagnostic testing of such findings is strongly recommended.

Keywords