Ceramics (Aug 2024)
Innovative Thin PiG Plates Boost the Luminous Efficacy and Reliability of WLEDs for Vehicles
Abstract
In this study, we demonstrate the high luminous efficacy of 118 lm/W and the high reliability of white LEDs (WLEDs) through 450 °C thermal aging, utilizing four-inch YAG: Ce3+ phosphor-in-glass (PiG) plates designed for vehicle headlights. The sintering process of mixing glass and phosphor typically generates pores, which can scatter light and reduce the luminous efficacy of the fabricated PiG. In this study, we produced four-inch PiG plates under four different fabrication conditions to evaluate their luminous efficacy. Our results revealed that the PiG plate with a thin thickness of 0.08 mm exhibited a 16.83% increase in luminous efficacy compared to the 0.15 mm plate, attributed to reduced light interaction with the pores. Unlike silicone-based phosphor WLEDs, which offer high performance but lower reliability due to the silicone resin’s low transition temperature (150 °C), our novel thin PiG plate achieves high performance and reliability. This advancement suggests that the proposed thin PiG plate could replace traditional silicone-based phosphors, enabling the development of high-quality WLEDs for vehicle headlights in automotive applications.
Keywords