Applied Sciences (Feb 2025)
Failure Law of Sandstone and Identification of Premonitory Deterioration Information Based on Digital Image Correlation–Acoustic Emission Multi-Source Information Fusion
Abstract
Efficiently extracting effective information from the massive experimental data from physical mechanics and accurately identifying the premonitory failure information from coal rock are key and difficult points of intelligent research on rock mechanics. In order to reveal the deterioration characteristics and the forewarning law of fractured coal rock, the digital image correlation method and the acoustic emission technology were adopted in this study to non-destructively detect the strain field, displacement field, and acoustic emission response in time and frequency domains. Additionally, by introducing the derivative functions of the multi-source information function for quantitative analysis, a comprehensive evaluation method was proposed based on the multi-source information fusion monitoring to forewarn red sandstone failure by levels during loading. The results show that obvious premonitory failure information, such as strain concentration areas, appears on red sandstone’s surface before macro-cracks can be observed. With an increase in the inclination angle of the prefabricated crack, the macroscopic failure mode gradually transforms from tensile splitting failure to tensile-shear mixed failure. Moreover, the dominant frequency signals of high frequency–low amplitude (HF–LA), intermediate frequency–low amplitude (IF–LA) and low frequency–low amplitude (LF–LA) are denser near the stress peak. The initial crack expansion time and failure limit time measured by multi-source information fusion are 20.72% and 26.71% earlier, respectively, than those measured by direct observation, suggesting that the forewarning of red sandstone failure by levels is realized with multi-source information fusion.
Keywords