Information (Sep 2024)
Efficient Cryptographic Solutions for Unbalanced Private Set Intersection in Mobile Communication
Abstract
Private Set Intersection (PSI) is a cryptographic method in secure multi-party computation that allows entities to identify common elements in their datasets without revealing their private data. Traditional approaches assume similar-sized datasets and equal computational power, overlooking practical imbalances. In real-world applications, dataset sizes and computational capacities often vary, particularly in the Internet of Things and mobile scenarios where device limitations restrict computational types. Traditional PSI protocols are inefficient here, as computational and communication complexities correlate with the size of larger datasets. Thus, adapting PSI protocols to these imbalances is crucial. This paper explores unbalanced PSI scenarios where one party (the receiver) has a relatively small dataset and limited computational power, while the other party (the sender) has a large amount of data and strong computational capabilities. It introduces three innovative solutions for unbalanced PSI: an unbalanced PSI protocol based on the Cuckoo filter, an unbalanced PSI protocol based on single-cloud assistance, and an unbalanced PSI protocol based on dual-cloud assistance, with each subsequent solution addressing the shortcomings of the previous one. Depending on performance and security needs, different protocols can be employed for applications such as private contact discovery.
Keywords