Frontiers in Psychology (May 2014)
A mixed-binomial model for Likert-type personality measures
Abstract
Personality measurement is based on the idea that values on an unobservable latent variable determine the distribution of answers on a manifest response scale. Typically, it is assumed in the Item Response Theory (IRT) that latent variables are related to the observed responses through continuous normal or logistic functions, determining the probability with which one of the ordered response alternatives on a Likert-scale item is chosen. Based on an analysis of 1,731 self- and other-rated responses on the 240 NEO PI-3 questionnaire items, it was proposed that a viable alternative is a finite number of latent events which are related to manifest responses through a binomial function which has only one parameter – the probability with which a given statement is approved. For the majority of items, the best fit was obtained with a mixed-binomial distribution, which assumes two different subpopulations who endorse items with two different probabilities. It was shown that the fit of the binomial IRT model can be improved by assuming that about 10% of random noise is contained in the answers and by taking into account response biases towards one of the response categories. It was concluded that the binomial response model for the measurement of personality traits may be a workable alternative to the more habitual normal and logistic IRT models.
Keywords